
The Theory of Ion-Distribution Coefficients, Their 
Determination and Use

NIELS BJERRUM

Paper read at the 3rd Nordic Chemist Meeting in Helsingfors 14th July, 1926. Translated from 
Förhandlingar och Foredrag. III. Nordiska Kemistmötet. Helsingfors (1928) pp. 92-105.

One of the subjects which have always commanded the interest of chemists is 
the question of the solubility of the substances. What forces are here at work, 
and how may solubility be computed quantitatively ?

In the 19th century, thermodynamics led us many paces forward along the way, 
but did not lead us to the core of the problem. The true understanding of the 
problems of solubility will not be gained from thermodynamics, but only from 
the more comprehensive atomistics, of which thermodynamics, in spite of its 
own great importance, is but a single side issue.

The problem of the solubility of a solid substance in a liquid divides naturally 
into two parts. The first deals with the structure of the solid substance, the second 
with the properties of the solution. This becomes apparent when the solution process 
takes place through evaporation. To compute the vapour pressure of the solid 
substance, it is necessary to know the work required to transform one molecule 
of the solid substance into the vapour state. This work depends on the crystal­
line structure of the substance. Going further, to determine the solubility from 
the vapour pressure, it is necessary to know the work required to transfer one 
molecule from the solution to the vapour state. This work depends on the pro­
perties of the solution.

Limiting our considerations to the strong electrolytes built up from stable ions, 
we find in the modem ion-lattice theory, especially developed by Born, an 
approximate theory for the work done when ions are transferred from the solid 
crystal into the vapour state. When, in what follows, we study the distribution 
of ions between two liquids, we are in reality studying the last mentioned work. 
The distribution between a liquid and its vapour may be considered a simple 
example of distribution between two liquids.
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I
Let us first look more closely at the definition and determination of the distri­

bution coefficients.
The definition of a distribution coefficient is simple enough in the case of two 

immiscible media. However, if the two media are miscible, as for instance, water 
and alcohol, the definition is slightly more difficult. We may define thus: The 
distribution coefficient is the ratio between the concentrations of the soluble substance 
in solutions in which the dissolved substance has the same activity. Solutions, in 
which the dissolved substance has the same activity, are, for instance, solutions 
saturated with the same solid substance, or in which the dissolved substance 
has the same vapour tension.

Each of the ions in an electrolyte has its own special distribution coefficient. The 
distribution coefficient of an electrolyte, which can be computed from its solu­
bility in two media, lies between those of the two ions, and in the case of binary 
electrolytes, it equals the square root of the product of the individual distribution 
coefficients.
Table 1. The sum of the ion-distribution exponents between water and alcohol for different salts, com­

puted from the solubilities of the salts in water and alcohol

Li Na K Rb Cs nh4 N(CH3)4 N(C2H6)4 Ag

Cl 
Br 
J 
C1O4
Benzoate 
Salicylate 
Laurate 
Myristate 
Palmitate 
Stearate

(5.1)
4.1

0.4 
—0.7 
—0.9 
—1.2

6.0

4.6
4.8
4.9

6.6
5.8
5.5
4.6

6.4

4.6 4.7

5.2
(5.1)
(5.9)
4.1
3.6

(5.2)

4.4 4.1

2.3

0.1 
—0.2 
—0.2

In table 1, Dr. Larsson and I have compiled a number of results about the 
ion-distribution coefficients between water and alcohol. The figures are computed 
from the results of solubility experiments (concentration in water in the numerator). 
Instead of the actual distribution coefficient K, its logarithm is given in the table; 
this is designated P and named the distribution exponent:

P = log 7
From solubility determinations it is impossible to calculate the distribution ex­
ponents of the individual ions, but the sum of the distribution exponents of the 
ions may be calculated; it is this sum which is given in the table.
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The figures make no great claim to exactitude. In the first place many of the 
solubility determinations are uncertain. Often the alcohol used contained water; 
neither is it absolutely certain in all cases that the solid form, whose solubility 
was determined, was the anhydrous unsolvated salt which is a presupposition for 
the exactness of the calculations. However our attention has been drawn to this 
point (moreover, through determinations of the vapour pressure of the solvates, 
it is possible to utilize also solubility determinations of solid hydrated salts in 
determining distribution coefficients).

The greatest inexactitude of the computations is due to a special characteristic 
of the distribution coefficients of the electrolytes. On account of inter-ionic forces, 
and in contrast to the case of non-electrolytes, the distribution coefficient of the 
electrolytes depends greatly upon concentration.

The value listed in the table, is when possible that limiting value which the 
distribution exponent approaches under increasing dilution.

If the distribution coefficient between water and alcohol, calculated directly 
from the solubilities, is called Vs it is possible to compute the limiting value 
for infinitely dilute solutions (Ko) according to the following equation:

in which ^HSO and Fa are the activity coefficients in the saturated aqueous and 
saturated alcoholic solutions, respectively.

Potassium chloride is that salt for which the sum of the ion-distribution ex­
ponents has the highest value (6.6). An aqueous solution of this salt must be

ey
10 2 = 2000

times more concentrated than an alcoholic solution, before distribution equilibri­
um (the same activity of the salt in the two solutions) is attained.

On the other hand, lithium stearate is that salt, for which the sum of the distri­
bution exponents has the lowest value (—1.2). The alcoholic solution of this 
salt must be 4 times as concentrated as the aqueous solution, before distribution 
equilibrium between the solutions is established.

The figures in parenthesis in table 1 are especially uncertain.
By measuring the electromotive force of such a chain as

H21 HC1 in water, AgCl | Ag—Ag | AgCl, HC1 in alcohol | H2,

in which an element with aqueous electrolyte is combined against the same 
element with alcoholic electrolyte, it is also possible to determine sums of ion­
distribution exponents. In this way, from Fleysher’s electrometric measurements, 



THE THEORY OF ION-DISTRIBUTION COEFFICIENTS 123

we have computed the sum of the distribution exponents of the hydrogen and 
chloride ion to 4.8.

For a weak acid one is able to compute the sum of the distribution ex­
ponents of the ions (PH + Panion) when the dissociation constants of the acid in 
the two media (7<HaO an^ K&) are known. As Larsson demonstrated in his 
doctor’s thesis, we find:

Ph + ¿’anion ~ ¿’undiss. acid = log ^H,O “ log KA = A log K.
It is therefore possible to determine the sum of the distribution exponents of 
the ions by adding the distribution exponent for the undissociated acid to the 
difference between the logarithms of the dissociation constants of the acids in 
the two media. This last distribution coefficient may be determined by means 
of the solubility of the acid in water and alcohol. This method is used in deter­
mining the distribution exponent of the ions of benzoic acid, salicylic acid, and 
the three nitrobenzoic acids (see table 2).

Table 2. The sum of the ion-distribution exponents between water and alcohol for different weak acids, 
calculated from the dissociation constants of the acids in water and in alcohol

Benzoic acid 3.91
Salicylic acid 3.47
o-Nitrobenzoic acid 4.25 
m- — - 3.17
p- — - 3.33

It is of course of special interest to determine the distribution exponents of the 
individual ions. Larsson has attempted this in his doctor’s thesis. It is known 
that a saturated aqueous solution of potassium chloride possesses only a very small 
diffusion potential against dilute aqueous solutions. He assumes that it also shows 
a negligibly small potential against alcoholic solutions. I shall discuss the justifica­
tion of this assumption later.

By measuring the potential in a cell such as,
H2 I HC1 in H2O I 3.5 M KC1 in H2O | HC1 in alcohol | H2

and using his above-mentioned assumption, Larsson computes the distribution 
exponent of the hydrogen ion to 2.52, and, in a similar way, that of the silver 
ion, the benzoate ion and the chloride ion to 2.06, 1.27, and 2.51, respectively. 
Continuing in the same way, we have computed the distribution exponent of 
the bromide ion to 1.84.

By means of these distribution exponents of the individual ions and our other 
material of distribution-exponent sums, it has been possible to list in table 3 a 
few ion-distribution exponents. The values vary from 4.1 for the potassium ion 
to —3.9 for the stearate ion.
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Table 3. Distribution exponents of ions between water and alcohol
H+ 2.5 ci- 2.5
Li + 2.8 Br- 1.8
Na+ 3.5 J- 1.4
K+ 4.1 cio4- 0.7
Rb+ 3.9 Benzoate ion 1.3
Cs + 4.0 Salicylate ion 1.2
Ag+ 2.1 o-Nitrobenzoate ion 1.7
nh4+ 2.7 m- — — 0.7
N(CH3)4+ 3.0 p- — 0.8
N(C2H6)4+ 2.7 Laurate ion —2.4

Myristate ion —3.5
Palmitate ion —3.7
Stearate ion —3.9

II
Roughly speaking, it may be said, that the way in which ions distribute them­

selves indicates that they prefer to be in water. Even though not all salts are 
soluble in water, yet they are almost all more soluble in water than in alcohol 
and in other non-aqueous solvents. This fact is the basis of the definition of 
salts by the ancient chemists as substances soluble in water.

The preference of ions for water is due to the large dielectric constant of that 
medium. When an electrically charged body is transferred from a dielectric 
to a vacuum, a certain (electric) work must be overcome. At the moment the 
body, for instance, is just above the surface of the dielectric, that surface 
will possess an opposite electric charge, and will therefore try to prevent the 
removal. Some years ago, Born showed that this work for a spherical ¿-valent 

ion, with radius r, may be expressed by (1——) (e denotes the chargeO)2
2r

of the electron and D the dielectric constant of the medium). He discovered, 
moreover, that this expression for reasonable values of r leads to plausible values 
for the development of heat by the transference of ions from vacuum into 
aqueous solution. Fajans had already earlier computed such heats of solution 
from experimental data and named them heats of hydration of the ions, a name, 
which to me seems somewhat misleading. Hückel followed the same principle 
in developing his formula for ion-activity coefficients in concentrated solutions, 
and also Scatchard has used this principle in his theory of the e. m. f. of cells 
with aqueous-alcoholic electrolytes.

Transferring a ¿-valent ion with radius r from water (with D = 81) to alcohol 
(with D = 26), the electric work to be overcome may be expressed as follows: 

O)2 / 1 _ J_\
2r \26 81/ ’
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This electric work introduces in the distribution exponent between water and

which when solved gives

Pe = 3.15 — (ar denotes the valency and r the radius in Å of the ion). For mono­

valent ions with radii 1, 2, and 3 Ä, Pe is, respectively, 3.15, 1.6, and 1.05.
If the distribution exponent for the same atom group, when uncharged, is PM, 

the distribution exponent P for the ion will be

P = Pe + Pu = 3A5^ + Pu.

As is well-known, ions like K+ and Cl~ are supposed to possess an external 
electronic structure, similar to that of argon. Therefore the above formula could be 
tested by adding to the distribution exponent of argon between water and alcohol, 
the electric term Pe, and thus finding out whether, by that means, the distribution 
exponents of the potassium and the chloride ions were obtained. Unfortunately, 
in so far as I know, the solubility in alcohol of rare gases has not yet been measured, 
but we are now planning experiments along those lines.

If P is known for the entire series of rare gases, He, Ne, A, Kr, X, it may be 
possible to make a more exact calculation, by considering that K+ and Cl- are, 
respectively, a little smaller and a little larger than the argon atom, and, in cal­
culating the non-electric part of the distribution exponents of the ions to inter­
polate between the distribution exponents of the rare gases.

For a larger organic ion, as for instance the benzoate ion, we may assume 
that the non-electric part is nearly the same as the entire value for the undisso­
ciated benzoic acid. Hence, we have

P(benzoate) ~ Pe + P(benzoic acid).
If this equation is combined with the previously mentioned equation from Lars­
son’s thesis:

Ph 4- P(benzoate) — P(benzoic acid) = A log K, 
we find,

PH + Pe = A log K.

(A log K expresses the difference between the value of log K in water and in 
alcohol).

Heinrich Goldschmidt has found that A log K is nearly constant for organic 
carboxylic acids. This agrees well with the above formula. According to Gold­
schmidt, A log K — about 6. If we set PH — 2.5, we find Pe — about 3.5, cor­
responding to an effective radius for the carboxyl group of about 0.8 Å.

111 1 • \.ZSP 1 / 1 1 \alcohol an electric term: P. = ——- log e ( —------ )e 2rKT 5 \26 81/
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For phenols, A log K is smaller than for carboxylic acids; Pe is therefore also 
smaller. The effective radius of the phenolate group is consequently larger. This 
may be explained by the location of the electric charge less close to the sur­
face.

When we remember that the electric part of the distribution exponent of car­
boxylate ions is about 3.5, whereas the entire distribution exponent for a laurate 
ion is only —2.4 and that for a stearate ion is but —3.9, we see that the paraffine 
end of these ions reduces the distribution exponent with 5.9 and 7.4 respectively, 
a proof of the power with which the paraffine part of the molecule shuns water.

It is comprehensible that ions with so different reactions to water in their two 
ends, must energetically orientate themselves in the surface of an aqueous solu­
tion with the paraffine end outwards and the carboxyl end inwards; moreover, 
they must have a tendency to form aggregates, “micells”, with the paraffine tails 
inwards, and the carboxyl ends outwards, towards the water.

The ability of soaps to lather, as well as their colloidal characteristics, may 
perhaps be approximately measured by the difference between the distribution 
exponents of their carboxyl ends (= Pe) and their paraffine ends (= P — Pe\

In the case of polyvalent ions, the electric term in the distribution exponent 
increases with the second power of the magnitude of the charge. Therefore, 
in the case of the di- and tri-valent ions, the difference between the solubility 
in water and in alcohol is, on the average, much larger than in the case 
of monovalent ions. In practice, this is illustrated by the difficulty that exists 
in finding salts with polyvalent ions, with even an appreciable solubility in alcohol.

Therefore, when salts are precipitated from aqueous solutions by the addition 
of alcohol, the solubility of salts with polyvalent ions decreases more rapidly 
under the addition of alcohol, than that of salts with monovalent ions“

In an other connection, Gjaldbæk has recently determined the solubility of 
three different salts in a series of mixtures of water and alcohol.

Table 4 shows his results which he communicated to me privately.

Table 4. The solubility of three different salts in alcohol of various strengths at about 22° C, according 
to Gjaldbcek

Strength of alcohol
Solubility in g. per 1. saturated solution of:

NaCl 
uni-univalent

Na2S4O8,2H2O 
uni-divalent

Na3Au (S2O3)232H2O 
uni-trivalent

50 % Tralles 114 382 77
60 - - 76 252 29
70 - 45 160 8
80 - - 40 66 2
90 - - 4 10 0
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The figures demonstrate clearly how the influence of the percentage of alcohol 
on the solubility increases with the valency of the ions. The very concentrated 
solutions of sodium tetrathionate in 50 per cent and 60 per cent alcohol shows 
this less clearly than the solutions of sodium chloride; however, in these strongly 
concentrated solutions, the activity of the ions increases undoubtedly much more 
rapidly than their concentration. The third salt is the complex sodium auro­
thiosulphate containing the trivalent aurothiosulphate ion.

As a matter of fact, water is not a continuous dielectric, but an aggregate 
of dipole molecules. Therefore the formula for the electric part of the distribu­
tion exponent of an ion expressed by

Pe = - 3.15r
is only approximate. The smaller the ion, the more uncertain the formula be­
comes. The orientation of the dipole molecules of the water around an ion assumes, 
when the ion is very small, the character of a chemical hydration, and Bom’s 
formula is certainly not applicable. This, for instance, is true of the hydrogen 
ion; this ion is present in water as H+,H2O and in alcohol as H+,C2H5OH. 
In mixtures of water and alcohol it appears in both forms. In the theory 
of P, this must be taken into account.

In mixtures of water and alcohol, we have the following chemical equilibri­
um for the hydrogen ion

H+, C2H5OH + H2O H+, H2O + C2H5OH
The equilibrium constant for this process has been determined by H. Gold­

schmidt. If we introduce molar concentrations of the ions and the vapour tensions 
of water and alcohol expressed in fractions of the vapour tensions of the pure 
liquids, we find K = about 100 in solutions rich in alcohol.

It is possible to demonstrate that the gross distribution exponent which 
we, in the preceding, have computed without taking the solvation into account, 
may be expressed by the following equation

PH = log + P(H+, H2O),
in which P(H+, H2O) indicates the distribution coefficient of the hydrated ion. 
K varies, depending on whether the value of the equilibrium constant has been 
determined in alcohol containing a little water, or in water containing a little 
alcohol. It is the former value we must use. As previously stated, it is about 100. 
If we introduce this value of K we obtain for the distribution coefficient of the 
hydrated hydrogen ion the surprisingly small value 0.5. However this is sup­
ported by the fact that a similar small value seems to hold for the hydroxyl ion, 
which, considering the smallness of the hydrogen nucleus must be assumed to 
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resemble the hydrogen ion a great deal. As the formulae H3O+ and HO show, 
the difference between them is merely two hydrogen nuclei.

Ill
Knowledge about the ion-distribution coefficients is of value in many respects. 

With the help of these coefficients it is possible, when the solubility of a salt 
in one medium is known, to determine the solubility of the salt in other media, 
or, when the e.m.f. of a cell with one solvent is known, to calculate the e.m.f. 
of the same cell with other solvents.

Of special interest is the connection between the ion-distribution coefficient 
and the so-called phase-boundary potentials.

Between two immiscible media, which contain an electrolyte in distribution 
equilibrium, a phase-boundary potential always exists, provided the distribu­
tion exponents for the cation and anion, and are not equal. Only by means 
of this potential is it possible to have distribution equilibrium with the same 
ratio of the concentrations of both cation and anion. The phase-boundary poten­
tial will influence the distribution of oppositely charged ions in opposite direc­
tions, and can thus make the distribution of the ions in equilibrium uniform, in 
spite of different distribution exponents.

This phase-boundary potential is (at 25° C and in the case of monovalent 
ions) expressed by the equation:

tcf = 0.0591 (PK — PA)
The potential is independent of the mobility of the ions and is solely determined 
by their distribution exponents.

If the electrolyte is not in distribution equilibrium between the two phases, 
a diffusion from one phase into the other will take place. It is natural to assume 
that distribution equilibrium will most often occur at the phase boundary 
itself, and that the very phase-boundary potential will be determined by the 
above formula. To this is added the diffusion potentials nD on both sides of the 
phase boundary, determined according to Nernst’s formula from the mobilities 
of the ions. The following equation designates the entire phase potential:

TC = Ko + + I • 0.0591 (PK — PA).
It is possible with some degree of approximation to use the same formula for 

the potential between salt solutions in two intermiscible media as water and alcohol. 
The entire potential is the sum of a phase-boundary potential which is determined 
by the distribution exponents of the ions, and diffusion potentials which depend 
on the mobilities of the ions, and which are the greater, the further the solutions 
are from being in distribution equilibrium with each other as regards the elec­
trolyte.
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We will use this theory in investigating the justification of assuming the poten­
tial between saturated aqueous KCl-solution and dilute alcoholic solutions to 
be zero.

Let us assume that the potential has the value x. Then the distribution exponent 

of the potassium ion, instead of 4.1 as computed earlier, will be 4.1 +
x

Ô059Ï ?

and in a similar way for the chloride ion 2.5 ------- -— . According to these for-
0.0591 &

mulae, the entire potential may be expressed by the equation 
0.0591 I- x ( x \ “IX = 2 L41 +Œ059Ï  \ ~~ 0.0591) J

As is readily seen, x vanishes and the equation is simplified to
1-0.0591-1.6 + ^ = 0

Let us first consider the fact that x vanishes. As a result of this, we are unable 
to say anything on the basis of our experiments about the absolute value of the 
phase-boundary potential, nor, indeed, anything about the absolute magnitude 
of the distribution exponents. Possibly is larger (or smaller) than 4.1, but 
if this be the case, all distribution exponents of the cations are, likewise, just 
as much larger (or smaller) and all the distribution exponents of the anions just 
as much smaller (or larger).

Another conclusion may be drawn from the above equation. Accepting Lars­
son’s assumption about the potential 0 between saturated aqueous potassium 
chloride solution and dilute alcoholic solutions, we find the distribution exponents 
for K+ and Cl~ to have a difference of 1.6. This shows that ~D must equal 
— I 0.0591 • 1.6 = —0.047 volts, and that therefore it was not permissible to 
ignore the diffusion potentials. The explanation for this must lie in the fact that 
the migration velocities of K+ and C1“ differ so much that the diffusion potentials 
in water and especially in alcohol are not negligible. For the present I have, 
however, refrained from correcting the given distribution coefficients, since, even 
after such a correction, the values would still be relative, as is described above, 
because we do not know the value of x.

However, certain considerations indicate that the distribution exponents of 
individual ions shown in table 3, are not far from being correct. Theoretically, 
it is most probable that the distribution exponent of the large chloride ion will 
be smaller than that of the structurally similar, smaller potassium ion, just as 
the values, 2.5 and 4.1, in table 3, show. Therefore Larsson’s assumption, that 
the potential difference between a saturated, aqueous potassium chloride solu­
tion and a dilute alcoholic solution is equal to zero, is also, perhaps, not far 
from the truth.

9
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If the temperature of a medium changes, it may be considered a different medium. 
We may therefore speak of distribution coefficients between water of 25° C and 
water of 75° C. It is this kind of thermal distribution coefficients, which Soret, 
in his days, determined by placing the salt solution in a vertical tube and keeping 
the upper end of the tube at a higher temperature for a considerable time, and 
then analyzing the solution at the top and at the bottom of the tube. As found 
by van’t Hoff and Arrhenius, it is impossible to explain Soret’s experiment by 
merely taking into account the change in osmotic pressure with temperature. 
Other forces must be at work, and based on the above, the change in the dielec­
tric constant of the water must produce one such force. We have found, however, 
that for the present, it is not enough to take this force into consideration, though 
certain main lines in the experimental results of Soret’s effect may be explained 
in this way, especially the fact that it is electrolytes with polyvalent ions (as 
CuSO4) which show strong Soret effects.

Because of the different distribution coefficients of the ions between cold and 
hot water, and their different migration velocities, thermo-electric forces must arise 
when one end of a salt solution is heated. Nernst and his pupils have studied 
these electromotive forces. Their investigations show that special forces come 
into play here, too. Both in Soret’s phenomenon and in the thermo-electric forces 
arising in electrolyte solutions of different temperature, there are possibilities for 
experimental investigations, which will give us information about ion-distribu­
tion coefficients.

As I hope I have made plain in the above, the ion-distribution coefficients 
are figures which procure us a comprehensive survey of a series of very different 
properties of electrolyte solutions. In the theory of ion-distribution coefficients 
advanced here, we have a theory applicable to all these properties. This theory 
leads us an essential step closer to the solution of the important problem of 
calculating in advance the solubility of salts in water and other solvents.

For the further development and extension of the theory, a considerable in­
crease of the available experimental material is, however, necessary. It is to be 
hoped that such material will be at hand in the years which lie just ahead.

This lecture is, in the main, based on a paper in which Dr. E. Larsson, Lund, 
was my collaborator, and which is not yet published.


